Sains Malaysiana 53(11)(2024): 3803-3815 

http://doi.org/10.17576/jsm-2024-5311-22

 

A Linearization based on Taylor Expansion to Multi-Objective Linear Fractional Program with Fuzzy Coefficients and Fuzzy Decision Variables

(Linearisasi berdasarkan Pengembangan Taylor kepada Program Pecahan Linear Pelbagai Objektif dengan Pekali Kabur dan Pemboleh Ubah Keputusan Kabur)

 

MOJTABA BORZA & AZMIN SHAM RAMBELY*

 

Department of Mathematical Sciences, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 23 January 2024/Accepted: 27 September 2024

 

Abstract

Reaching an efficient solution for multi-objective programming problem (MOPP) is not easy and may encompass some hardships due to existing more than one objective. The aim of this research was to introduce a new efficient method to tackle fully fuzzy multi-objective linear fractional programming problem (FFMOLFPP) i.e., a multi-objective linear fractional programming problem (MOLFPP) with fuzzy coefficients and fuzzy decision variables. To construct the approach, the  of the fuzzy numbers, variable transformations, the first-order Taylor series, the membership functions, and the weighted sum method are used.  In two phases, this method alters the fully fuzzy problem into linear programming problem (LPP) which its solution is at least a weakly efficient for the main problem.  Numerical examples are compared to an existing method and the outcomes demonstrate that our proposed method is much more accurate.

 

Keywords: Fuzzy numbers; membership functions; Taylor series; the weighted sum method

 

Abstrak

Mencapai penyelesaian yang cekap untuk masalah pengaturcaraan berbilang objektif (MOPP) bukanlah mudah dan mungkin merangkumi beberapa kesukaran kerana terdapat lebih daripada satu objektif sedia ada. Matlamat penyelidikan ini adalah untuk memperkenalkan kaedah baharu yang cekap untuk menangani masalah pengaturcaraan pecahan linear berbilang objektif kabur sepenuhnya (FFMOLFPP) iaitu masalah pengaturcaraan pecahan linear berbilang objektif (MOLFPP) dengan pekali kabur dan pemboleh ubah keputusan kabur. Untuk membina pendekatan ini, potongan α nombor kabur, transformasi pemboleh ubah, siri Taylor tertib pertama, fungsi keahlian dan kaedah jumlah wajaran digunakan. Dalam dua fasa, kaedah ini mengubah masalah kabur sepenuhnya kepada masalah pengaturcaraan linear (LPP) yang penyelesaiannya sekurang-kurangnya ϵ-cekap untuk masalah utama. Contoh berangka dibandingkan dengan kaedah sedia ada dan hasilnya menunjukkan bahawa kaedah cadangan kami adalah lebih tepat.

 

Kata kunci: Fungsi keahlian; kaedah hasil tambah wajaran; nombor kabur; siri Taylor

 

References

Ahmad, S., Ullah, A., Akgül, A. & Baleanu, D. 2020. Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel. Results in Physics 19: 103559.

Antunes, C.H., Alves, M.J. & Clímaco, J. 2016. Multiobjective Linear and Integer Programming. New York: Springer.

Arya, R., Singh, P., Kumari, S. & Obaidat, M.S. 2020. An approach for solving fully fuzzy multi-objective linear fractional optimization problems. Soft Computing 24: 9105-9119.

Borza, M. & Rambely, A.S. 2023. A new efficient approach to tackle multi objective linear fractional problem with flexible constraints. Journal of Industrial and Management Optimization 19(6): 4180-4198.

Borza, M. & Rambely, A.S. 2022a. Tackling the fuzzy multi-objective linear fractional problem using a parametric approach. Journal of Intelligent & Fuzzy Systems 43(1): 721-734.

Borza, M. & Rambely, A.S. 2022b. A parametric approach to fuzzy multi-objective linear fractional program: An alpha cut based method. Journal of Intelligent & Fuzzy Systems 42(6): 5639-5652.

Borza, M. & Rambely, A.S. 2022c. An approach based on cuts and max-min technique to linear fractional programming with fuzzy coefficients. Iranian Journal of Fuzzy Systems 19(1): 153-169.

Borza, M. & Rambely, A.S. 2021a. A new method to solve multi-objective linear fractional problems. Fuzzy Information and Engineering 13(3): 323-334.

Borza, M. & Rambely, A.S. 2021b. A linearization to the sum of linear ratios programming problem. Mathematics 9(9): 1004.

Borza, M., Rambely, A.S. & Edalatpanah, S.A. 2023. A linearization to the multi-objective linear plus linear fractional program. Operations Research Forum 4: 82.

Borza, M., Rambely, A. & Saraj, M. 2012. A Stackelberg solution to a two-level linear fractional programming problem with interval coefficients in the objective functions. Sains Malaysiana 41(12): 1651-1656.

Chakraborty, M. & Gupta, S. 2002. Fuzzy mathematical programming for multi objective linear fractional programming problem. Fuzzy Sets and Systems 125(3): 335-342.

Chanas, S. & Kuchta, D. 1994. Linear programming problem with fuzzy coefficients in the objective function. In Fuzzy Optimization, Recent Advances, edited by Delgado, M., Kacprzyk, J., Verdegay, J.L. & Vila, M.A. Wurzburg: Physica-Verlag. pp.148-157.

Charnes, A. & Cooper, W.W. 1962. Programming with linear fractional functionals. Naval Research Logistics Quarterly 9(3‐4): 181-186.

Chinnadurai, V. & Muthukumar, S. 2016. Solving the linear fractional programming problem in a fuzzy environment: Numerical approach. Applied Mathematical Modelling 40(11-12): 6148-6164.

Das, S.K., Edalatpanah, S.A. & Mandal, T. 2020. Application of linear fractional programming problem with fuzzy nature in industry sector. Filomat 34(15): 5073-5084.

De, P.K. & Deb, M. 2015. Solution of multi objective linear fractional programming problem by Taylor series approach. 2015 International Conference on Man and Machine Interfacing (MAMI), Bhubaneswar, India. pp. 1-5. doi: 10.1109/MAMI.2015.7456582

Deb, M. 2018. A study of fully fuzzy linear fractional programming problems by signed distance ranking technique. In Optimization Techniques for Problem Solving in Uncertainty, edited by Tilahun, S.L. & Ngnotchouye, J.M.T. Hershey: IGI Global. pp. 73-115.

Dinkelbach, W. 1967. On nonlinear fractional programming. Management Science 13(7): 492-498.

Garai, T. & Garg, H. 2019. Multi‐objective linear fractional inventory model with possibility and necessity constraints under generalised intuitionistic fuzzy set environment. CAAI Transactions on Intelligence Technology 4(3): 175-181.

Garg, H., Mahmoodirad, A. & Niroomand, S. 2021. Fractional two-stage transshipment problem under uncertainty: Application of the extension principle approach. Complex & Intelligent Systems 7(2): 807-822.

Kaufmann, A. & Gupta, M.M. 1988. Fuzzy Mathematical Models in Engineering and Management Science. Elsevier Science Inc.

Kumar, A., Kaur, J. & Singh, P. 2011. A new method for solving fully fuzzy linear programming problems. Applied Mathematical Modelling 35(2): 817-823.

Liu, X., Gao, Y.L., Zhang, B. & Tian, F.P. 2019. A new global optimization algorithm for a class of linear fractional programming. Mathematics 7(9): 867.

Mahmoodirad, A., Garg, H. & Niroomand, S. 2022. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization 18(1): 439-456.

Mehra, A., Chandra, S. & Bector, C.R. 2007. Acceptable optimality in linear fractional programming with fuzzy coefficients. Fuzzy Optimization and Decision Making 6: 5-16.

Moore, R.E., Kearfott, R.B. & Cloud, M.J. 2009. Introduction to Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics.

Nayak, S. & Ojha, A.K. 2019. Multi-objective linear fractional programming problem with fuzzy parameters. In Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, edited by Bansal, J., Das, K., Nagar, A., Deep, K. & Ojha, A. Singapore: Springer. pp. 79-90.

Pal, B.B., Moitra, B.N. & Maulik, U. 2003. A goal programming procedure for fuzzy multiobjective linear fractional programming problem. Fuzzy Sets and Systems 139(2): 395-405.

Radhakrishnan, B. & Anukokila, P. 2014. Fractional goal programming for fuzzy solid transportation problem with interval cost. Fuzzy Information and Engineering 6(3): 359-377.

Rao, P.P.B. 2017. Ranking fuzzy numbers using alpha cuts and centroids. Journal of Intelligent & Fuzzy Systems 33(4): 2249-2258.

Rashmanlou, H. & Borzooei, R.A. 2016. Vague graphs with application. Journal of Intelligent & Fuzzy Systems 30(6): 3291-3299.

Stancu-Minasian, I.M. 1997. Fractional Programming: Theory, Methods and Applications. Springer Science & Business Media.

StanojeviÄ, B. & StanojeviÄ, M. 2013. Solving method for linear fractional optimization problem with fuzzy coefficients in the objective function. International Journal of Computers Communications & Control 8(1): 146-152.

Toksarı, M.D. 2008. Taylor series approach to fuzzy multiobjective linear fractional programming. Information Sciences 178(4): 1189-1204.

Vafamand, A., Vafamand, N., Zarei, J., Razavi-Far, R. & Saif, M. 2021. Multi-objective NSBGA-II control of HIV therapy with monthly output measurement. Biomedical Signal Processing and Control 68: 102561.

Vafamand, A., Vafamand, N., Zarei, J., Razavi-Far, R. & Dragičević, T. 2020. Intelligent multiobjective NSBGA-II control of power converters in DC microgrids. IEEE Transactions on Industrial Electronics 68(11): 10806-10814.

Veeramani, C. & Sumathi, M. 2014. Fuzzy mathematical programming approach for solving fuzzy linear fractional programming problem. RAIRO-Operations Research 48(1): 109-122.

Wang, L.X. 1996. A Course in Fuzzy Systems and Control. New Jersey: Prentice-Hall, Inc.

Wang, Y., Liu, L., Guo, S., Yue, Q. & Guo, P. 2019. A bi-level multi-objective linear fractional programming for water consumption structure optimization based on water shortage risk. Journal of Cleaner Production 237: 117829.

Zapata, H., Perozo, N., Angulo, W. & Contreras, J. 2020. A hybrid swarm algorithm for collective construction of 3D structure. International Journal of Artificial Intelligence 18(1): 1-18.

Zimmermann, H.J. 2001. Fuzzy Set Theory - and Its Applications. 4th ed. Springer Science & Business Media.

 

*Corresponding author; email: asr@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next